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Abstract

i

After presenting some new insight into the concept of “service curves,” we
derive a “service curve guarantee” for a window flow control protocol with
cross-traffic characterized by burstiness constraints. Our approach is conve-
nient for studying the end-to-end behavior of hop-by-hop window flow control,
and has an interesting relationship with a linear feedback system under the
“min-plus” algebra. For affine burstiness constraints on the cross-traffic, we
find that a window size proportional to the sum of the burstiness parameters
of the cross-traffic and the user bandwidth delay product is sufficient to max-
imize guaranteed throughput. In addition, we find that buffers need not be
as large as window sizes for lossless operation with large propagation delays.

1 System Model

We will consider the two server system depicted in Figure 1, which models a window flow
protocol. Traffic from a source is generated according to a function of time Ry, called a
rate function, such that Ry (t) is the instantaneous rate at which traffic is being generated
at time t. The traffic from the source feeds a buffer, called the first buffer. Traffic departs
the first buffer according to the rate function R;. We assume that the system is empty
at time 0. Let Bi(t) denote the amount of traffic held in the first buffer at time ¢. Thus

Bi(#) =/0t Ro(a)da—/OtRl(a)da. (1)

A server, called the first server, governs the rate R; at which traffic departs the first
buffer. The server has a transmission capacity of C bits/sec, so that R;(¢) < C for all t.
In fact, the first server handles other sources of traffic, called “cross-traffic,” at time ¢ at
rate I;(t), where 0 < I,(t) < C; thus Ry (t) < C — I,(1).

Traffic departs the first buffer at rate R;(¢) and feeds a “network element”, N/, which
serves traffic in a FIFO manner at rate R/(¢). Recalling that the system is empty at
time 0, the amount of traffic held in N/ at time ¢ is thus

B/(1) :/OtRl(a)da—/otRf(a)da. @)

Network element N/ feeds another buffer, called the second buffer. Traffic departs
the second buffer according to the rate function Ry(t). The amount of traffic held in the
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Figure 1: Two Servers in Tandem.

second buffer at time ¢ is thus

By(t) = [ "R (0)do — / " Ro()da . (3)

A second server governs the rate R, at which traffic departs from the second buffer.
The second server also has a capacity of C' bits/sec, and serves cross-traffic from other
sources at rate I5(t) at time ¢, where 0 < Iy(t) < C; thus Ry(t) < C — Ly(1).

Traffic departing the first buffer is subject to “window flow control,” whereby traffic
departing the first buffer may have to wait for acknowledgements from the the second
server. More specifically, as traffic from the original source departs the second buffer,
acknowledgements are correspondingly generated by the second server and sent back to
the first server via a network element N°®. The rate at which acknowledgements are
generated at the second server at time ¢ is Ry(f). The network element N? operates
in a FIFO manner and serves acknowledgements at rate R°(¢). Thus, the amount of
acknowledgements in N°® at time ¢ is

B0 = [ " Ro(a)dor — / "R()da . (4)

The window flow control protocol operates with respect to a positive parameter K,
called the “window size.” The first server must insure that no more than K units of
traffic are unacknowledged. Thus, traffic in the first buffer may have to wait for acknowl-
edgements to arrive before being eligible for service at the first server. The total amount
of traffic unacknowledged (sometimes known as the number of outstanding credits or
tokens) at time ¢ is denoted as T'(¢). Using the definitions above, it follows that

T(t) = Bf (t) +B2(t)+£9b(t)
- /O Ri(a)da — /O R*(a)da . (5)

The first server serves traffic from the first buffer as fast as possible, but insures that
T(t) < K for all t. More specifically,

C —I(t) ,if By(t) > 0 and T'(t)
min{C — I, (t), Ro(t)} ,if By(t) = 0 and T(t)
min{C — I (t), R*(t)} , if By(t) > 0 and T'(¢)
min{C — I, (t), Ro(t), R®(t)} ,if Bi(t)=0and T(t) =

Ry (t) =
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Similarly, the second server serves traffic from the second buffer as fast as possible:

N C - Ig(t) , if Bg(t) >0
By(t) = { min{C — L(t), RI(8)} . if Ba(t) = 0 . (7)

The system evolution is completely determined by (1)-(7) and the functions Ry, I3, I,
R’ and R®. We characterize the network elements N/ and N° by “service curves” S¥ and
S® (defined below), respectively. Finally, we assume general “burstiness constraints” [1]
on the cross-traffic, i.e. we assume that there exist non-negative non-decreasing functions
b§"** such that for 7 = 1,2 and all s < ¢ there holds

/ " (a)da < B (t — s) | (8)

1.1 Discussion

The model described above has a number of applications. For example, it may model
a single hop within an ATM network that uses credit based flow control. The network
element N/ would model forward propagation delay in this case. It has been proposed
that acknowledgements only be sent back periodically, rather than continuously, and so
the network element N° could model a combination of backward propagation delay and
jitter caused by accumulation of acknowledgements until a burst of acknowledgements is
sent back.

Another possible application is the situation in which end-to-end window flow control
is applied across multiple hops. In this case, N/ would model a combination of queueing
and propagation delay suffered in the forward path to the destination. Similarly, N°
would model a combination of queueing and propagation delay in the backward path for
acknowledgements returning to the first server.

Alternatively, the model could describe the flow of data across a protocol layer within
a host, whereby processes that feed a buffer enter a blocked state when the buffer reaches
capacity, and the processes provide bursty service due to multi-tasking within an oper-
ating system.

More generally, the model is of interest in manufacturing networks where window
flow control is induced naturally by limited storage space for parts being serviced by a
sequence of machines, e.g. see [8].

The model described above is a generalization of a model previously proposed in [3],
where N/ and N® were not present (ie. R/ = R; and R’ = Ry), b5°**(z) = o0; + pix
(affine burstiness constraints on cross-traffic), and B;(0) = co (infinite supply of packets
at the source). For this special case, a lower bound on the throughput of the system,
lim inf;_, o (1/%) fot R,, was derived using a “Lyapunov function approach.” Although this
approach yielded tight results for two servers in tandem, it is difficult to generalize for
more than two servers in tandem (see Figure 3) since finding an appropriate Lyapunov
function is problematic. Instead, in [3], an aggregation and decomposition technique was
used to recursively reduce the analysis of several servers in tandem to the two server case.

In this paper, we use the concept of “service curves” [2] to analyze the system de-
scribed above. This allows us to easily extend the analysis for more than two servers
in tandem, to incorporate “propagation” delays, and to consider general burstiness con-
straints on the cross-traffic.



Before analyzing the model above, we define service curves and present some new
interpretations relating to linear system theory. In Section 3, we present our main results
on the two server system discussed in this section. In Section 4, we apply the results of
Section 3 to the case of several servers in tandem.

2 Service Curves

Consider a system with entering and exiting traffic described by the rate functions R;,
and Ryy. The amount of data stored in the system at time ¢ > 0 is B(t) = [y (Rin(c) —
Roui())da, where we assume B(0) = 0. Suppose S is a given non-negative function.
To simplify the notation, assume without loss of generality that S(z) = 0 for all z < 0.
Building upon the results in [9], the following definition was essentially proposed in [2] —
it is adapted here to the continuous time case.

Definition 1. (Strict Service Curve Guarantee). A system is said to strictly
guarantee the service curve S if for all t, there exists s <t with B(s) =0 and
JF Royy(a)da > S(t — s).

The adjective “strict” was not used in [2]. It is added here to differentiate it from a
slightly weaker service guarantee which we now introduce:

Definition 2. (Service Curve Guarantee). A system is said to guarantee the
service curve S if for all t > 0, there exists s < t such that fot Rout(a)da — [§ Rin(a)do >
S(t—s).

Note that if B(s) = 0, then [ R;,(o)da = [; Rouw()da, so that a strict service curve
guarantee implies a service curve guarantee. The converse is not necessarily true.

In passing, we note that [10] a (o, p) (“leaky bucket”) regulator guarantees the service
curve Syeq(z) =0 + pz, > 0.

Given two functions F' and G defined on the non-negative reals, define the convolution
(over the “min-plus algebra”) of F' and G, written F * G, as

FxG(z) =min{F(z,) + G(x2) : 21 > 0,29 > 0,21 + 22 = 2} ,

where the minimum is replaced by an infimum if necessary. It is easy to verify that the
convolution operation is commutative and associative, and that it distributes over the
minimum operation. It is straightforward to verify that the following is in fact equivalent
to Definition 2.

Alternative Definition 2. (Service Curve Guarantee). A system is said to
guarantee the service curve S if for allt > 0 there holds [} Roy(c)do > S()* f§ Rin(c)dor.

Define the “impulse function” §(z) = 0 if z < 0, and §(z) = +oc if z > 0. Note that
for any function F', F % (z) = F(x). It is interesting to note then that a service curve is
the impulse response of the network element, in some sense, under the min-plus algebra.

In [2], it is shown that if a system strictly guarantees a service curve, then bounds
on delay, buffer size, and burstiness of the output traffic are easily derived, assuming
burstiness constraints on the traffic arriving to the system. It turns out that identical
bounds hold if the service curve guarantee is not necessarily strict. The proofs are almost
identical — see [10] for the discrete time case. For completeness, we include these results
below. The virtual delay at time t, D(t), is defined as

t+A t
D(t) = min{A : A > 0 and / Roui(a)da > / Rin(a)da} .
0 0
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Theorem A. [2] Assume that [' Ri,(a)da < b(t — s) for all s < t. Suppose a system
guarantees a service curve of S (not necessarily strict). Then
(a) (Buffer Requirements) There holds for all t

B(t) < max{[b(a) — S(@)]'}

(b) (Bound on Delay) There holds for all t

D(t) < Iggg{{min{A :A>0and b(a) < S(a+A)}}.

(¢) (Output Burstiness) For all s <t there holds ! Ryy(a)da < by (t — ), where

bout(a:) = Iglggc{b(ac + A) — S(A)} .

Theorem B. [2] (Convolution Theorem) Consider traffic flowing through a system
consisting of n subsystems in tandem, where the 1" subsystem guarantees the service
curve S; (not necessarily strict). Then the system as a whole guarantees the service
curve Sper = S1 % Sg k- % S,,.

Given the analogy to linear filtering theory, it is natural to ask if there is a concept
of a transform domain. Given a function F' defined on the non-negative reals, define the
“concave conjugate” of F', N*F', as

N"F(p) = inf {pr — F(z)} ,p>0.
Note that if F' is concave, then N*[N*F] = F. Similarly, define the “convex conjugate”
of F', U'F, as

U"F(p) = sup {pz — F(z)} ,p>0,

z:x>0
and note that U*[U*F| = F if F is convex. It is straightforward to verify that for two
functions F' and G we have

U*[F + G](p) = U"F(p) + U"G(p) ,

which is the analogue of the convolution property for Fourier transforms. It is also
interesting to study the mapping from b to by, in Theorem A, part (c). It is easy to verify
that the function pz is an eigenfunction of this mapping, in some sense. Furthermore it
is not difficult to show that

— 07 [boue] (p) < — 0" [b](p) + U7[S](p) -

3 Service Curve for Window Flow Control

We return to the system illustrated in Figure 1. We will assume that network elements
N/ and N® guarantee service curves S and S° respectively (not necessarily strict).



3.1 Service Curve for Window Flow Control

We focus on finding a service curve for the first buffer and server. Given any t, let
s* = max{s : s < t and By(s) = 0}. From (7), it follows that Ry(s) = C — I5(s) for
s € (s*,t), and therefore from (8) we have

t
/ Ro(a)da > C(t — s7) — b (t — s%) .
Since Ry > 0, we have
t
/ Ro(a)da > [O(t — s%) — b (t — s*)]* .

Noting that Bs(s*) = 0, it follows that the subsystem consisting of the second buffer and
second server strictly guarantees the service curve Sy, where

Sa(x) = [Cz — b5 ()] . (9)

Note, however, that the subsystem consisting of the first bufter and first server does
not necessarily guarantee the service curve S; defined as

A

Si(x) = [Cx — b7 (2)]" (10)

since the window flow control protocol may inhibit such a service guarantee. The next
theorem identifies a service curve that s guaranteed by the subsystem consisting of the
first buffer and first server.

Before stating the theorem, we introduce some convenient notation. Given a function
G, and a positive integer n, let G™ be the n-fold convolution of G with itself, i.e.

GM(z)=G*Gx---xG(x) .

n

In the case where n = 0, we define G (z) = §(z).

Theorem 1 (Service Curve for Window Flow Control) Suppose that the subsys-
tem consisting of the second buffer and second server guarantees the service curve Ss,
and that network elements N¥ and N® guarantee the service curves S¥ and S®, respec-
tively. Define Sipop(x) = Si % S % Sy % S¥(x). Then the subsystem consisting of the first
buffer and first server strictly guarantees the service curve Si, where

Si(z) = min {5 * Sl(orzz),(as) +mK} (11)

meZ+
and Z* 1is the set of non-negative integers.
Remark: It is interesting to note that that the service curve S; given in
Theorem 1 is the “impulse response” of the linear feedback system depicted

in Figure 2, under the “min-plus” algebra.

To prove Theorem 1 , we will use the lemma below.
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Figure 2: Window Flow Control as a Linear Feedback System.

Lemma 1 For any fized t, under the hypothesis of Theorem 1, there exists a finite se-

quence of intervals (Uni1,tn), (tnyUn), -, (u1,to), with ty = t, such that Bi(unt1) = 0
and:
t; N
/ Rl(a)doz Z Sl(t, — ui—H) Vi = 0, ., N (12)
Ui41
/ T Ri@)da > ST xSy % S(uips —tis)) + K Vi=0,.,n—1 .  (13)
tit1

Furthermore, the lengths of these intervals satisfy the constraints:

t,‘—’u,i_H Z 0, 7;:0,..,71, (14)
Ui—|—1_ti—|—l 2 K/C, Z:O,,Tl—l (15)

Proof of Lemma 1: Fix ¢ > 0 and set t; = ¢. We define u;, in terms of ¢;:
ui+1 = max{max{s:s <t;, Bi(s) =0}, max{u:u <t,T(u)=K}}. (16)

Note that T'(s) < K and By(s) > 0 Vs € (u;41,t;) and hence using (6) and (8) we have

/uti Ri(a)da = C(t; —uiy1) — /ti I (@)do

i+1 Ui+1

> C(ti — uig1) — 7% (b — uiga) -

Remembering that [ Rj(a)da > 0, and using the definition in (10), this implies

Uit+1

t; .
/ Ri(a)da > Si(ti — uip1) ,
Uit1
which proves (12). If By(u;;1) = 0 then set n = 1.

Otherwise, if B;(u;11) > 0, then note that T'(u;y1) = K. In this case, we will define
tir1 in terms of u; 1 as follows. By the convolution theorem (Theorem B), the system
consisting of the series cascade of N/, the second buffer and second server, and N°®
guarantees a service curve of S¥ x S, * S® (). Thus, there exists ¢;.; < u;;; such that

Ui41 tit1
/ ’ R'(a)da — / " Ri(a)da > ST % Sy % S(uipy — tiy1) - (17)
0 0
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Using equations (5) and (17), we get

K = T(U;i+1)
= /ZJrl Rl(a)da—/ o R (a)do
0 0
Ui+1 tit1
< [ Ri(a)da — SF % Sy % SP(uss1 — tips) —/ " Ri(a)da.  (18)
0 0

This proves (13).
By construction, we have t; — u;;; > 0, which is (14). Since service curves are non-
negative and R; is bounded above by C, we get from (18)
Ui+1
K S . Rl(a)da S C’(uiﬂ - ti+1) s (19)
i+1
which implies (15). By construction, ¢;11; > wu;;2. Hence by adding the non-negative
quantity C(t;4+1 — u;42) to the right side of (19), we get u;41 — w42 > K/C > 0. Thus,
since the system is completely empty at time 0 and % is finite, the recursion must end in
a finite number of iterations, i.e. Bj(u;y+1) = 0 for some finite 7. Thus, the construction
results in a finite sequence of intervals as claimed in the lemma.

¢

Proof of Theorem 1 : Fix any ¢ > 0. Invoking Lemma 1, we have

t n t; nol ey
/ Ri(a)da = Z/ Ry (a)da + Z/ Ri(a)da
u Wi+l i=0 7Y

n+1 i=0 tit1

AV

n n—1
D Si(ti — wir1) + D_{ST % Sp # S®(uis1 — tig1) + K}
=0 =0
n—1
= Sl(tn - un+1) + Z{Sl(tz — ui+1) + Sf * Sg * Sb(uiﬂ - ti+1) + K}
=0
n—1

Sy (tn — Ung1) + Z{Sloop(ti —tiv1) + K}

i=0
S; * Sl(;?p(t — Upy1) + K
Si(t — unt1) -

v

AVARAY]

Noting that Bj(u,.1) = 0, this completes the proof.
¢
Suppose that the delay in network element N/ is upper bounded by 7, and that
the delay in N°® is upper bounded by 7,. This would happen if N/ and N® represent
propagation delay. In this case, it is easy to show that for d = f or d = b, network
element N¢ guarantees the service curve S, where S%(z) = §(x — 74). We use this fact
in the next corollary, which considers affine burstiness constraints on the cross-traffic.

Corollary 1 Suppose b§7°%(x) = 0, + pax, b5 (x) = o + ppx, and the delay through
N7/ and N° are bounded by 77 and 7y, respectively. Define A = 74+ 1y + [04/(C — pa)] +
[0b/(C — )], and p = max{p,, pp}. Then the system consisting of the first buffer and
first server strictly guarantees a service curve of Si(x) where

51(x) = min QP(a) (20)

meZ+t
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)" =251() (21)

and for m > 1:

)T+ mK . (22)

The next corollary assesses the impact of the window size K. Define

b

(C—p)(rp+m)+ g:gs 04+ 0y , otherwise.

(23)

K*_{ (C_p)(Tf+Tb)+0a+%&0’b s 1 pa > po

Corollary 2 Suppose b5"°%(x) = 0, + pax and bS5 (x) = op+ ppz, and the delay through
N7 and N® is upper bounded by Tr and T, respectively. Then the system consisting of the
first buffer and first server strictly guarantees a service curve of Si(x), where if K > K*
then

o[ @@ =5E) i
Sile) = { win{QY(e), Q}(x)} | otheruise .
and if K < K* then -

Remark: Corollary 2 implies that a window size equal to the sum
of the burstiness of the cross-traffic at the first server (o,), the burstiness
of the cross-traffic at the second server (o), and the user bandwidth delay
product ((C' — p)(77 + 7)) is sufficient to guarantee the maximum guaranteed
throughput of C' — p.

3.2 Buffer Requirements for Window Flow Control

If the input stream R, is characterized by a burstiness constraint, an upper bound on
By (t) can be derived from Theorem A and Theorem 1. An obvious upper bound for
By (t) is the window size K, which can be achieved if the delay through network elements
N/ and N? is allowed to be zero. However, it is sometimes possible to derive an upper
bound on By(t) which is smaller than the window size K, even under no assumptions on
Ry.

To illustrate this, we now consider the case where N/ and NP represent constant
delays of 7 and 7, respectively. We will derive an upper bound on Bs(t) using two facts.
First, note that in this case we have

t—1 t—(T+7p)
T(t—Tf):/O le(oz)da—/O i Ry(a)da < K.
Thus,
t—7y t
By(t) = /0 Ri(@)da — /0 Ry(a)da
t—(Tf-‘rTb) t
< {K+ / Ry(a)da} — / Ry(a)da
0 0

t
- K- / Ry(a)da . (26)
t—(15+7p)

9



Second, in this case, the time elapsed from the time a piece of traffic leaves the first
server until the acknowledgement for it returns to the first server is at least 7y +7,. Thus,
for any s and ¢ such that 0 <t —s < 75 + 7, we have

/ "Ri(a)da < K . (27)

Since R; is bounded above by the capacity of the server C, from (27) it follows that for
any s and ¢ such that 0 <t —s <7y + 7 we have

t
/ Ri(e)da < min{C(t — s), K} . (28)
Both inequalities (26) and (27) are due to [6].

Theorem 2 Suppose that N/ and N° represent constant delays T and Ty, respectively,
and that the cross-traffic Iy at the second server satisfies the burstiness constraint (8).
Then the amount of traffic Bo(t) in the second buffer satisfies

By(t) < max{B*, B*} , (29)
where
Bg’l = max {min{Cz, K} — [Cx — bg’""“(x)]ﬂ

z:0<z <7547

B = K- [C(r +7) = b5 (17 + )] T .

Proof Fix ¢t and define v = max{s : s < ¢,By(s) = 0}. If t —u > 77 + 7, then
By(s) > 0 for all s € (t — 74 — 7,t) and hence

¢ t
/ Ry(a)da = C(rp+m) — / L(a)da
t—Tf—Tb t—'rf—'rb
> [C(rp+ 1) — b5 (15 + )] . (30)
Thus, in this case it follows from (26) that By(t) < B3”.
If t —u < 74 + 7 then using (28) it follows that

Bo(t) = /utRf(a)da—/:Rg(a)da

/U_Tff Ri(a)da — /ut[C — I(o)]da

min{C(t — u), K} — [C(t — u) — b (t — u)]*
BY .

IA A

¢
As an example, suppose that b5°**(z) = oy, + pp, and 0,/(C — pp) < K/C < 75+ 1.
In this case Theorem 2 yields that

Bz(t) <o+ pb(K/C’) .

10
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Figure 3: Several Servers in Tandem.

As claimed, the upper bound above may be considerably smaller than the window size
K. Smaller upper bounds on Bs(t) can be obtained if R; is more strongly regulated.
One way to achieve this is to assume a lower bound on the cross-traffic at the first server.
In this case, if there is insufficient cross-traffic at the first server to achieve this, the
first server could “pretend” there is additional cross-traffic. Perhaps a better approach
is to have the first server directly control the burstiness of R;. This is a topic for future
research.

4 Several Servers in Tandem

We now investigate the several server case as shown in Figure 3 where we have n cascaded
buffer-server pairs. The model is analogous to the two server case and precise definitions
are omitted here for brevity.

In order to analyze this multiserver system, we may apply Theorem 1 recursively as
follows. Given a burstiness constraint for the cross-traffic at the n'* server, a service
curve S, strictly guaranteed by the n'* buffer-server pair is implied, analogous to (9).
Theorem 1 then implies that a service curve S,_; is strictly guaranteed by the (n — 1)
buffer-server pair. This process is repeated until a strict service curve guarantee of S; is
derived for the j* buffer-server pair for all j. The end-to-end service curve for the entire
system is then (Sy % Sy % - % S,) % (S{ % SJ % - -- x SI)(z) by Theorem B. The following
corollary follows by using this method.

Corollary 3 Consider the tandem configuration of n buffer-server pairs as illustrated in
Figure 3, where network elements N]f and NJ’? have mazimum delays T]f and TJI-), respec-
tively. Suppose b§"***(x) = o; + pix for all i =1,..,n, where p=p, = py = ... = py.

IfK; > 05+ 011+ (C—p) (7] + 'rf) Vj =1,..n—1, then the system consisting of
the 7™ buffer and the j** server strictly guarantees a service curve of

Sij(z) = [~o;+(C—=p)z]™ V j=1,.,n

Furthermore the entire system guarantees a service curve of Siua(z) = (C — p)(xz —

e i rf)+ . If Ry is such that [’ Ry(a)da < oq + po(t — 8) for all s < t,

where pg < C — p, then the total end-to-end delay is bounded above by Dyypar, where

=005 | "~
Dyotar = C{__ P + Z TJZ . (31)
j=1

11



The results in Corollary 3 improve previously reported bounds, where we showed
that Z;’:—ll K; = O(n?) was sufficient for a guaranteed throughput of C — p [3] and for a
maximum total end-to-end delay bounded by O(n?) [4].
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